# Copyright (c) 2021-2024, InterDigital Communications, Inc
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import annotations
import torch
import torch.nn as nn
from einops import rearrange
try:
from pointops.functions import pointops
except ImportError:
pass # NOTE: Optional dependency.
from compressai.layers.pointcloud.hrtzxf2022 import index_points
from compressai.losses.utils import compute_rate_loss
from compressai.registry import register_criterion
[docs]
@register_criterion("ChamferPccRateDistortionLoss")
class ChamferPccRateDistortionLoss(nn.Module):
"""Simple loss for regular point cloud compression.
For compression models that reconstruct the input point cloud.
"""
LMBDA_DEFAULT = {
# "bpp": 1.0,
"rec": 1.0,
}
def __init__(self, lmbda=None, rate_key="bpp"):
super().__init__()
self.lmbda = lmbda or dict(self.LMBDA_DEFAULT)
self.lmbda.setdefault(rate_key, 1.0)
[docs]
def forward(self, output, target):
out = {
**self.compute_rate_loss(output, target),
**self.compute_rec_loss(output, target),
}
out["loss"] = sum(
self.lmbda[k] * out[f"{k}_loss"]
for k in self.lmbda.keys()
if f"{k}_loss" in out
)
return out
def compute_rate_loss(self, output, target):
if "likelihoods" not in output:
return {}
N, P, _ = target["pos"].shape
return compute_rate_loss(output["likelihoods"], N, P)
def compute_rec_loss(self, output, target):
dist1, dist2, _, _ = chamfer_distance(
target["pos"], output["x_hat"], order="b n c"
)
loss_chamfer = dist1.mean() + dist2.mean()
return {"rec_loss": loss_chamfer}
def chamfer_distance(xyzs1, xyzs2, order="b n c"):
# idx1, dist1: (b, n1)
# idx2, dist2: (b, n2)
xyzs1_bcn = rearrange(xyzs1, f"{order} -> b c n").contiguous()
xyzs1_bnc = rearrange(xyzs1, f"{order} -> b n c").contiguous()
xyzs2_bcn = rearrange(xyzs2, f"{order} -> b c n").contiguous()
xyzs2_bnc = rearrange(xyzs2, f"{order} -> b n c").contiguous()
idx1 = pointops.knnquery_heap(1, xyzs2_bnc, xyzs1_bnc).long().squeeze(2)
idx2 = pointops.knnquery_heap(1, xyzs1_bnc, xyzs2_bnc).long().squeeze(2)
torch.cuda.empty_cache()
dist1 = ((xyzs1_bcn - index_points(xyzs2_bcn, idx1)) ** 2).sum(1)
dist2 = ((xyzs2_bcn - index_points(xyzs1_bcn, idx2)) ** 2).sum(1)
return dist1, dist2, idx1, idx2