Command line usage#
bench#
Collect performance metrics of published traditional or end-to-end image codecs.
usage: python -m compressai.utils.bench [-h] {} ...
Collect codec metrics.
positional arguments:
{} Select codec
options:
-h, --help show this help message and exit
eval_model#
Evaluate an end-to-end compression model on an image dataset.
usage: python -m compressai.utils.eval_model [-h] {pretrained,checkpoint} ...
Evaluate a model on an image dataset.
positional arguments:
{pretrained,checkpoint}
model source
options:
-h, --help show this help message and exit
find_close#
Find the closest codec quality parameter to reach a given metric (bpp, ms-ssim, or psnr).
- Example usages:
python -m compressai.utils.find_close webp ~/picture.png 0.5 --metric bpp
python -m compressai.utils.find_close jpeg ~/picture.png 35 --metric psnr --save
usage: python -m compressai.utils.find_close [-h]
[-m {bpp,psnr-rgb,ms-ssim-rgb}]
[--save]
{} ... image target
Collect codec metrics and performances.
positional arguments:
{} Select codec
image image filepath
target target value to match
options:
-h, --help show this help message and exit
-m {bpp,psnr-rgb,ms-ssim-rgb}, --metric {bpp,psnr-rgb,ms-ssim-rgb}
--save Save reconstructed image to disk
plot#
Simple plotting utility to display Rate-Distortion curves (RD) comparison between codecs.
usage: python -m compressai.utils.plot [-h] -f [...] [-m] [-t] [-o]
[--figsize ] [--axes ] [--backend]
[--show]
options:
-h, --help show this help message and exit
-f [ ...], --results-file [ ...]
-m , --metric Metric (default: psnr)
-t , --title Plot title
-o , --output Output file name
--figsize Figure relative size (width, height), default: (9, 6)
--axes Axes limit (xmin, xmax, ymin, ymax), default:
autorange
--backend Change plot backend (default: matplotlib)
--show Open plot figure
update_model#
Update the CDFs parameters of a trained model.
To be called on a model checkpoint after training. This will update the internal CDFs related buffers required for entropy coding.
usage: python -m compressai.utils.update_model [-h] [-n NAME] [-d DIR]
[--no-update]
[-a {factorized-prior,jarhp,mean-scale-hyperprior,scale-hyperprior,ssf2020,bmshj2018-factorized,bmshj2018_factorized_relu,bmshj2018-hyperprior,mbt2018-mean,mbt2018,cheng2020-anchor,cheng2020-attn,bmshj2018-hyperprior-vbr,mbt2018-mean-vbr,mbt2018-vbr}]
filepath
Export a trained model to a new checkpoint with updated CDFs and a hash prefix
so that it can be loaded later via `load_state_dict_from_url`.
positional arguments:
filepath Path to the checkpoint model to be exported.
options:
-h, --help show this help message and exit
-n NAME, --name NAME Exported model name.
-d DIR, --dir DIR Exported model directory.
--no-update Do not update the model CDFs parameters.
-a {factorized-prior,jarhp,mean-scale-hyperprior,scale-hyperprior,ssf2020,bmshj2018-factorized,bmshj2018_factorized_relu,bmshj2018-hyperprior,mbt2018-mean,mbt2018,cheng2020-anchor,cheng2020-attn,bmshj2018-hyperprior-vbr,mbt2018-mean-vbr,mbt2018-vbr}, --architecture {factorized-prior,jarhp,mean-scale-hyperprior,scale-hyperprior,ssf2020,bmshj2018-factorized,bmshj2018_factorized_relu,bmshj2018-hyperprior,mbt2018-mean,mbt2018,cheng2020-anchor,cheng2020-attn,bmshj2018-hyperprior-vbr,mbt2018-mean-vbr,mbt2018-vbr}
Set model architecture (default: scale-hyperprior).