Source code for compressai.latent_codecs.gaussian_conditional

# Copyright (c) 2021-2024, InterDigital Communications, Inc
# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:

# * Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
#   contributors may be used to endorse or promote products derived from this
#   software without specific prior written permission.

# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from typing import Any, Dict, List, Optional, Tuple, Union

import torch.nn as nn

from torch import Tensor

from compressai.entropy_models import GaussianConditional
from compressai.ops import quantize_ste
from compressai.registry import register_module

from .base import LatentCodec

__all__ = [
    "GaussianConditionalLatentCodec",
]


[docs] @register_module("GaussianConditionalLatentCodec") class GaussianConditionalLatentCodec(LatentCodec): """Gaussian conditional for compressing latent ``y`` using ``ctx_params``. Probability model for Gaussian of ``(scales, means)``. Gaussian conditonal entropy model introduced in `"Variational Image Compression with a Scale Hyperprior" <https://arxiv.org/abs/1802.01436>`_, by J. Balle, D. Minnen, S. Singh, S.J. Hwang, and N. Johnston, International Conference on Learning Representations (ICLR), 2018. .. note:: Unlike the original paper, which models only the scale (i.e. "width") of the Gaussian, this implementation models both the scale and the mean (i.e. "center") of the Gaussian. .. code-block:: none ctx_params ┌──┴──┐ │ EP │ └──┬──┘ ┌───┐ y_hat ▼ y ──►──┤ Q ├────►────····──►── y_hat └───┘ GC """ gaussian_conditional: GaussianConditional entropy_parameters: nn.Module def __init__( self, scale_table: Optional[Union[List, Tuple]] = None, gaussian_conditional: Optional[GaussianConditional] = None, entropy_parameters: Optional[nn.Module] = None, quantizer: str = "noise", chunks: Tuple[str] = ("scales", "means"), **kwargs, ): super().__init__() self.quantizer = quantizer self.gaussian_conditional = gaussian_conditional or GaussianConditional( scale_table, **kwargs ) self.entropy_parameters = entropy_parameters or nn.Identity() self.chunks = tuple(chunks) def forward(self, y: Tensor, ctx_params: Tensor) -> Dict[str, Any]: gaussian_params = self.entropy_parameters(ctx_params) scales_hat, means_hat = self._chunk(gaussian_params) y_hat, y_likelihoods = self.gaussian_conditional(y, scales_hat, means=means_hat) if self.quantizer == "ste": y_hat = quantize_ste(y - means_hat) + means_hat return {"likelihoods": {"y": y_likelihoods}, "y_hat": y_hat} def compress(self, y: Tensor, ctx_params: Tensor) -> Dict[str, Any]: gaussian_params = self.entropy_parameters(ctx_params) scales_hat, means_hat = self._chunk(gaussian_params) indexes = self.gaussian_conditional.build_indexes(scales_hat) y_strings = self.gaussian_conditional.compress(y, indexes, means_hat) y_hat = self.gaussian_conditional.decompress( y_strings, indexes, means=means_hat ) return {"strings": [y_strings], "shape": y.shape[2:4], "y_hat": y_hat} def decompress( self, strings: List[List[bytes]], shape: Tuple[int, int], ctx_params: Tensor, **kwargs, ) -> Dict[str, Any]: (y_strings,) = strings gaussian_params = self.entropy_parameters(ctx_params) scales_hat, means_hat = self._chunk(gaussian_params) indexes = self.gaussian_conditional.build_indexes(scales_hat) y_hat = self.gaussian_conditional.decompress( y_strings, indexes, means=means_hat ) assert y_hat.shape[2:4] == shape return {"y_hat": y_hat} def _chunk(self, params: Tensor) -> Tuple[Tensor, Tensor]: scales, means = None, None if self.chunks == ("scales",): scales = params if self.chunks == ("means",): means = params if self.chunks == ("scales", "means"): scales, means = params.chunk(2, 1) if self.chunks == ("means", "scales"): means, scales = params.chunk(2, 1) return scales, means