# Copyright (c) 2021-2024, InterDigital Communications, Inc
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import warnings
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import scipy.stats
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from compressai._CXX import pmf_to_quantized_cdf as _pmf_to_quantized_cdf
from compressai.ops import LowerBound
class _EntropyCoder:
"""Proxy class to an actual entropy coder class."""
def __init__(self, method):
if not isinstance(method, str):
raise ValueError(f'Invalid method type "{type(method)}"')
from compressai import available_entropy_coders
if method not in available_entropy_coders():
methods = ", ".join(available_entropy_coders())
raise ValueError(
f'Unknown entropy coder "{method}"' f" (available: {methods})"
)
if method == "ans":
from compressai import ans
encoder = ans.RansEncoder()
decoder = ans.RansDecoder()
elif method == "rangecoder":
import range_coder
encoder = range_coder.RangeEncoder()
decoder = range_coder.RangeDecoder()
self.name = method
self._encoder = encoder
self._decoder = decoder
def encode_with_indexes(self, *args, **kwargs):
return self._encoder.encode_with_indexes(*args, **kwargs)
def decode_with_indexes(self, *args, **kwargs):
return self._decoder.decode_with_indexes(*args, **kwargs)
def default_entropy_coder():
from compressai import get_entropy_coder
return get_entropy_coder()
def pmf_to_quantized_cdf(pmf: Tensor, precision: int = 16) -> Tensor:
cdf = _pmf_to_quantized_cdf(pmf.tolist(), precision)
cdf = torch.IntTensor(cdf)
return cdf
def _forward(self, *args: Any) -> Any:
raise NotImplementedError()
class EntropyModel(nn.Module):
r"""Entropy model base class.
Args:
likelihood_bound (float): minimum likelihood bound
entropy_coder (str, optional): set the entropy coder to use, use default
one if None
entropy_coder_precision (int): set the entropy coder precision
"""
def __init__(
self,
likelihood_bound: float = 1e-9,
entropy_coder: Optional[str] = None,
entropy_coder_precision: int = 16,
):
super().__init__()
if entropy_coder is None:
entropy_coder = default_entropy_coder()
self.entropy_coder = _EntropyCoder(entropy_coder)
self.entropy_coder_precision = int(entropy_coder_precision)
self.use_likelihood_bound = likelihood_bound > 0
if self.use_likelihood_bound:
self.likelihood_lower_bound = LowerBound(likelihood_bound)
# to be filled on update()
self.register_buffer("_offset", torch.IntTensor())
self.register_buffer("_quantized_cdf", torch.IntTensor())
self.register_buffer("_cdf_length", torch.IntTensor())
def __getstate__(self):
attributes = self.__dict__.copy()
attributes["entropy_coder"] = self.entropy_coder.name
return attributes
def __setstate__(self, state):
self.__dict__ = state
self.entropy_coder = _EntropyCoder(self.__dict__.pop("entropy_coder"))
@property
def offset(self):
return self._offset
@property
def quantized_cdf(self):
return self._quantized_cdf
@property
def cdf_length(self):
return self._cdf_length
# See: https://github.com/python/mypy/issues/8795
forward: Callable[..., Any] = _forward
def quantize(
self, inputs: Tensor, mode: str, means: Optional[Tensor] = None
) -> Tensor:
if mode not in ("noise", "dequantize", "symbols"):
raise ValueError(f'Invalid quantization mode: "{mode}"')
if mode == "noise":
half = float(0.5)
noise = torch.empty_like(inputs).uniform_(-half, half)
inputs = inputs + noise
return inputs
outputs = inputs.clone()
if means is not None:
outputs -= means
outputs = torch.round(outputs)
if mode == "dequantize":
if means is not None:
outputs += means
return outputs
assert mode == "symbols", mode
outputs = outputs.int()
return outputs
def _quantize(
self, inputs: Tensor, mode: str, means: Optional[Tensor] = None
) -> Tensor:
warnings.warn("_quantize is deprecated. Use quantize instead.", stacklevel=2)
return self.quantize(inputs, mode, means)
@staticmethod
def dequantize(
inputs: Tensor, means: Optional[Tensor] = None, dtype: torch.dtype = torch.float
) -> Tensor:
if means is not None:
outputs = inputs.type_as(means)
outputs += means
else:
outputs = inputs.type(dtype)
return outputs
@classmethod
def _dequantize(cls, inputs: Tensor, means: Optional[Tensor] = None) -> Tensor:
warnings.warn("_dequantize. Use dequantize instead.", stacklevel=2)
return cls.dequantize(inputs, means)
def _pmf_to_cdf(self, pmf, tail_mass, pmf_length, max_length):
cdf = torch.zeros(
(len(pmf_length), max_length + 2), dtype=torch.int32, device=pmf.device
)
for i, p in enumerate(pmf):
prob = torch.cat((p[: pmf_length[i]], tail_mass[i]), dim=0)
_cdf = pmf_to_quantized_cdf(prob, self.entropy_coder_precision)
cdf[i, : _cdf.size(0)] = _cdf
return cdf
def _check_cdf_size(self):
if self._quantized_cdf.numel() == 0:
raise ValueError("Uninitialized CDFs. Run update() first")
if len(self._quantized_cdf.size()) != 2:
raise ValueError(f"Invalid CDF size {self._quantized_cdf.size()}")
def _check_offsets_size(self):
if self._offset.numel() == 0:
raise ValueError("Uninitialized offsets. Run update() first")
if len(self._offset.size()) != 1:
raise ValueError(f"Invalid offsets size {self._offset.size()}")
def _check_cdf_length(self):
if self._cdf_length.numel() == 0:
raise ValueError("Uninitialized CDF lengths. Run update() first")
if len(self._cdf_length.size()) != 1:
raise ValueError(f"Invalid offsets size {self._cdf_length.size()}")
def compress(self, inputs, indexes, means=None):
"""
Compress input tensors to char strings.
Args:
inputs (torch.Tensor): input tensors
indexes (torch.IntTensor): tensors CDF indexes
means (torch.Tensor, optional): optional tensor means
"""
symbols = self.quantize(inputs, "symbols", means)
if len(inputs.size()) < 2:
raise ValueError(
"Invalid `inputs` size. Expected a tensor with at least 2 dimensions."
)
if inputs.size() != indexes.size():
raise ValueError("`inputs` and `indexes` should have the same size.")
self._check_cdf_size()
self._check_cdf_length()
self._check_offsets_size()
strings = []
for i in range(symbols.size(0)):
rv = self.entropy_coder.encode_with_indexes(
symbols[i].reshape(-1).int().tolist(),
indexes[i].reshape(-1).int().tolist(),
self._quantized_cdf.tolist(),
self._cdf_length.reshape(-1).int().tolist(),
self._offset.reshape(-1).int().tolist(),
)
strings.append(rv)
return strings
def decompress(
self,
strings: str,
indexes: torch.IntTensor,
dtype: torch.dtype = torch.float,
means: torch.Tensor = None,
):
"""
Decompress char strings to tensors.
Args:
strings (str): compressed tensors
indexes (torch.IntTensor): tensors CDF indexes
dtype (torch.dtype): type of dequantized output
means (torch.Tensor, optional): optional tensor means
"""
if not isinstance(strings, (tuple, list)):
raise ValueError("Invalid `strings` parameter type.")
if not len(strings) == indexes.size(0):
raise ValueError("Invalid strings or indexes parameters")
if len(indexes.size()) < 2:
raise ValueError(
"Invalid `indexes` size. Expected a tensor with at least 2 dimensions."
)
self._check_cdf_size()
self._check_cdf_length()
self._check_offsets_size()
if means is not None:
if means.size()[:2] != indexes.size()[:2]:
raise ValueError("Invalid means or indexes parameters")
if means.size() != indexes.size():
for i in range(2, len(indexes.size())):
if means.size(i) != 1:
raise ValueError("Invalid means parameters")
cdf = self._quantized_cdf
outputs = cdf.new_empty(indexes.size())
for i, s in enumerate(strings):
values = self.entropy_coder.decode_with_indexes(
s,
indexes[i].reshape(-1).int().tolist(),
cdf.tolist(),
self._cdf_length.reshape(-1).int().tolist(),
self._offset.reshape(-1).int().tolist(),
)
outputs[i] = torch.tensor(
values, device=outputs.device, dtype=outputs.dtype
).reshape(outputs[i].size())
outputs = self.dequantize(outputs, means, dtype)
return outputs
[docs]
class EntropyBottleneck(EntropyModel):
r"""Entropy bottleneck layer, introduced by J. Ballé, D. Minnen, S. Singh,
S. J. Hwang, N. Johnston, in `"Variational image compression with a scale
hyperprior" <https://arxiv.org/abs/1802.01436>`_.
This is a re-implementation of the entropy bottleneck layer in
*tensorflow/compression*. See the original paper and the `tensorflow
documentation
<https://github.com/tensorflow/compression/blob/v1.3/docs/entropy_bottleneck.md>`__
for an introduction.
"""
_offset: Tensor
def __init__(
self,
channels: int,
*args: Any,
tail_mass: float = 1e-9,
init_scale: float = 10,
filters: Tuple[int, ...] = (3, 3, 3, 3),
**kwargs: Any,
):
super().__init__(*args, **kwargs)
self.channels = int(channels)
self.filters = tuple(int(f) for f in filters)
self.init_scale = float(init_scale)
self.tail_mass = float(tail_mass)
# Create parameters
filters = (1,) + self.filters + (1,)
scale = self.init_scale ** (1 / (len(self.filters) + 1))
channels = self.channels
self.matrices = nn.ParameterList()
self.biases = nn.ParameterList()
self.factors = nn.ParameterList()
for i in range(len(self.filters) + 1):
init = np.log(np.expm1(1 / scale / filters[i + 1]))
matrix = torch.Tensor(channels, filters[i + 1], filters[i])
matrix.data.fill_(init)
self.matrices.append(nn.Parameter(matrix))
bias = torch.Tensor(channels, filters[i + 1], 1)
nn.init.uniform_(bias, -0.5, 0.5)
self.biases.append(nn.Parameter(bias))
if i < len(self.filters):
factor = torch.Tensor(channels, filters[i + 1], 1)
nn.init.zeros_(factor)
self.factors.append(nn.Parameter(factor))
self.quantiles = nn.Parameter(torch.Tensor(channels, 1, 3))
init = torch.Tensor([-self.init_scale, 0, self.init_scale])
self.quantiles.data = init.repeat(self.quantiles.size(0), 1, 1)
target = np.log(2 / self.tail_mass - 1)
self.register_buffer("target", torch.Tensor([-target, 0, target]))
def _get_medians(self) -> Tensor:
medians = self.quantiles[:, :, 1:2]
return medians
def update(self, force: bool = False, update_quantiles: bool = False) -> bool:
# Check if we need to update the bottleneck parameters, the offsets are
# only computed and stored when the conditonal model is update()'d.
if self._offset.numel() > 0 and not force:
return False
if update_quantiles:
self._update_quantiles()
medians = self.quantiles[:, 0, 1]
minima = medians - self.quantiles[:, 0, 0]
minima = torch.ceil(minima).int()
minima = torch.clamp(minima, min=0)
maxima = self.quantiles[:, 0, 2] - medians
maxima = torch.ceil(maxima).int()
maxima = torch.clamp(maxima, min=0)
self._offset = -minima
pmf_start = medians - minima
pmf_length = maxima + minima + 1
max_length = pmf_length.max().item()
device = pmf_start.device
samples = torch.arange(max_length, device=device)
samples = samples[None, :] + pmf_start[:, None, None]
pmf, lower, upper = self._likelihood(samples, stop_gradient=True)
pmf = pmf[:, 0, :]
tail_mass = torch.sigmoid(lower[:, 0, :1]) + torch.sigmoid(-upper[:, 0, -1:])
quantized_cdf = self._pmf_to_cdf(pmf, tail_mass, pmf_length, max_length)
self._quantized_cdf = quantized_cdf
self._cdf_length = pmf_length + 2
return True
def loss(self) -> Tensor:
logits = self._logits_cumulative(self.quantiles, stop_gradient=True)
loss = torch.abs(logits - self.target).sum()
return loss
def _logits_cumulative(self, inputs: Tensor, stop_gradient: bool) -> Tensor:
# TorchScript not yet working (nn.Mmodule indexing not supported)
logits = inputs
for i in range(len(self.filters) + 1):
matrix = self.matrices[i]
if stop_gradient:
matrix = matrix.detach()
logits = torch.matmul(F.softplus(matrix), logits)
bias = self.biases[i]
if stop_gradient:
bias = bias.detach()
logits = logits + bias
if i < len(self.filters):
factor = self.factors[i]
if stop_gradient:
factor = factor.detach()
logits = logits + torch.tanh(factor) * torch.tanh(logits)
return logits
def _likelihood(
self, inputs: Tensor, stop_gradient: bool = False
) -> Tuple[Tensor, Tensor, Tensor]:
half = float(0.5)
lower = self._logits_cumulative(inputs - half, stop_gradient=stop_gradient)
upper = self._logits_cumulative(inputs + half, stop_gradient=stop_gradient)
likelihood = torch.sigmoid(upper) - torch.sigmoid(lower)
return likelihood, lower, upper
def forward(
self, x: Tensor, training: Optional[bool] = None
) -> Tuple[Tensor, Tensor]:
if training is None:
training = self.training
if not torch.jit.is_scripting():
# x from B x C x ... to C x B x ...
perm = torch.cat(
(
torch.tensor([1, 0], dtype=torch.long, device=x.device),
torch.arange(2, x.ndim, dtype=torch.long, device=x.device),
)
)
inv_perm = perm
else:
raise NotImplementedError()
# TorchScript in 2D for static inference
# Convert to (channels, ... , batch) format
# perm = (1, 2, 3, 0)
# inv_perm = (3, 0, 1, 2)
x = x.permute(*perm).contiguous()
shape = x.size()
values = x.reshape(x.size(0), 1, -1)
# Add noise or quantize
outputs = self.quantize(
values, "noise" if training else "dequantize", self._get_medians()
)
if not torch.jit.is_scripting():
likelihood, _, _ = self._likelihood(outputs)
if self.use_likelihood_bound:
likelihood = self.likelihood_lower_bound(likelihood)
else:
raise NotImplementedError()
# TorchScript not yet supported
# likelihood = torch.zeros_like(outputs)
# Convert back to input tensor shape
outputs = outputs.reshape(shape)
outputs = outputs.permute(*inv_perm).contiguous()
likelihood = likelihood.reshape(shape)
likelihood = likelihood.permute(*inv_perm).contiguous()
return outputs, likelihood
@staticmethod
def _build_indexes(size):
dims = len(size)
N = size[0]
C = size[1]
view_dims = np.ones((dims,), dtype=np.int64)
view_dims[1] = -1
indexes = torch.arange(C).view(*view_dims)
indexes = indexes.int()
return indexes.repeat(N, 1, *size[2:])
@staticmethod
def _extend_ndims(tensor, n):
return tensor.reshape(-1, *([1] * n)) if n > 0 else tensor.reshape(-1)
@torch.no_grad()
def _update_quantiles(self, search_radius=1e5, rtol=1e-4, atol=1e-3):
"""Fast quantile update via bisection search.
Often faster and much more precise than minimizing aux loss.
"""
device = self.quantiles.device
shape = (self.channels, 1, 1)
low = torch.full(shape, -search_radius, device=device)
high = torch.full(shape, search_radius, device=device)
def f(y, self=self):
return self._logits_cumulative(y, stop_gradient=True)
for i in range(len(self.target)):
q_i = self._search_target(f, self.target[i], low, high, rtol, atol)
self.quantiles[:, :, i] = q_i[:, :, 0]
@staticmethod
def _search_target(f, target, low, high, rtol=1e-4, atol=1e-3, strict=False):
assert (low <= high).all()
if strict:
assert ((f(low) <= target) & (target <= f(high))).all()
else:
low = torch.where(target <= f(high), low, high)
high = torch.where(f(low) <= target, high, low)
while not torch.isclose(low, high, rtol=rtol, atol=atol).all():
mid = (low + high) / 2
f_mid = f(mid)
low = torch.where(f_mid <= target, mid, low)
high = torch.where(f_mid >= target, mid, high)
return (low + high) / 2
def compress(self, x):
indexes = self._build_indexes(x.size())
medians = self._get_medians().detach()
spatial_dims = len(x.size()) - 2
medians = self._extend_ndims(medians, spatial_dims)
medians = medians.expand(x.size(0), *([-1] * (spatial_dims + 1)))
return super().compress(x, indexes, medians)
def decompress(self, strings, size):
output_size = (len(strings), self._quantized_cdf.size(0), *size)
indexes = self._build_indexes(output_size).to(self._quantized_cdf.device)
medians = self._extend_ndims(self._get_medians().detach(), len(size))
medians = medians.expand(len(strings), *([-1] * (len(size) + 1)))
return super().decompress(strings, indexes, medians.dtype, medians)
[docs]
class GaussianConditional(EntropyModel):
r"""Gaussian conditional layer, introduced by J. Ballé, D. Minnen, S. Singh,
S. J. Hwang, N. Johnston, in `"Variational image compression with a scale
hyperprior" <https://arxiv.org/abs/1802.01436>`_.
This is a re-implementation of the Gaussian conditional layer in
*tensorflow/compression*. See the `tensorflow documentation
<https://github.com/tensorflow/compression/blob/v1.3/docs/api_docs/python/tfc/GaussianConditional.md>`__
for more information.
"""
def __init__(
self,
scale_table: Optional[Union[List, Tuple]],
*args: Any,
scale_bound: float = 0.11,
tail_mass: float = 1e-9,
**kwargs: Any,
):
super().__init__(*args, **kwargs)
if not isinstance(scale_table, (type(None), list, tuple)):
raise ValueError(f'Invalid type for scale_table "{type(scale_table)}"')
if isinstance(scale_table, (list, tuple)) and len(scale_table) < 1:
raise ValueError(f'Invalid scale_table length "{len(scale_table)}"')
if scale_table and (
scale_table != sorted(scale_table) or any(s <= 0 for s in scale_table)
):
raise ValueError(f'Invalid scale_table "({scale_table})"')
self.tail_mass = float(tail_mass)
if scale_bound is None and scale_table:
scale_bound = self.scale_table[0]
if scale_bound <= 0:
raise ValueError("Invalid parameters")
self.lower_bound_scale = LowerBound(scale_bound)
self.register_buffer(
"scale_table",
self._prepare_scale_table(scale_table) if scale_table else torch.Tensor(),
)
self.register_buffer(
"scale_bound",
torch.Tensor([float(scale_bound)]) if scale_bound is not None else None,
)
@staticmethod
def _prepare_scale_table(scale_table):
return torch.Tensor(tuple(float(s) for s in scale_table))
def _standardized_cumulative(self, inputs: Tensor) -> Tensor:
half = float(0.5)
const = float(-(2**-0.5))
# Using the complementary error function maximizes numerical precision.
return half * torch.erfc(const * inputs)
@staticmethod
def _standardized_quantile(quantile):
return scipy.stats.norm.ppf(quantile)
def update_scale_table(self, scale_table, force=False):
# Check if we need to update the gaussian conditional parameters, the
# offsets are only computed and stored when the conditonal model is
# updated.
if self._offset.numel() > 0 and not force:
return False
device = self.scale_table.device
self.scale_table = self._prepare_scale_table(scale_table).to(device)
self.update()
return True
def update(self):
multiplier = -self._standardized_quantile(self.tail_mass / 2)
pmf_center = torch.ceil(self.scale_table * multiplier).int()
pmf_length = 2 * pmf_center + 1
max_length = torch.max(pmf_length).item()
device = pmf_center.device
samples = torch.abs(
torch.arange(max_length, device=device).int() - pmf_center[:, None]
)
samples_scale = self.scale_table.unsqueeze(1)
samples = samples.float()
samples_scale = samples_scale.float()
upper = self._standardized_cumulative((0.5 - samples) / samples_scale)
lower = self._standardized_cumulative((-0.5 - samples) / samples_scale)
pmf = upper - lower
tail_mass = 2 * lower[:, :1]
quantized_cdf = torch.Tensor(len(pmf_length), max_length + 2)
quantized_cdf = self._pmf_to_cdf(pmf, tail_mass, pmf_length, max_length)
self._quantized_cdf = quantized_cdf
self._offset = -pmf_center
self._cdf_length = pmf_length + 2
def _likelihood(
self, inputs: Tensor, scales: Tensor, means: Optional[Tensor] = None
) -> Tensor:
half = float(0.5)
if means is not None:
values = inputs - means
else:
values = inputs
scales = self.lower_bound_scale(scales)
values = torch.abs(values)
upper = self._standardized_cumulative((half - values) / scales)
lower = self._standardized_cumulative((-half - values) / scales)
likelihood = upper - lower
return likelihood
def forward(
self,
inputs: Tensor,
scales: Tensor,
means: Optional[Tensor] = None,
training: Optional[bool] = None,
) -> Tuple[Tensor, Tensor]:
if training is None:
training = self.training
outputs = self.quantize(inputs, "noise" if training else "dequantize", means)
likelihood = self._likelihood(outputs, scales, means)
if self.use_likelihood_bound:
likelihood = self.likelihood_lower_bound(likelihood)
return outputs, likelihood
def build_indexes(self, scales: Tensor) -> Tensor:
scales = self.lower_bound_scale(scales)
indexes = scales.new_full(scales.size(), len(self.scale_table) - 1).int()
for s in self.scale_table[:-1]:
indexes -= (scales <= s).int()
return indexes
class GaussianMixtureConditional(GaussianConditional):
def __init__(
self,
K=3,
scale_table: Optional[Union[List, Tuple]] = None,
*args: Any,
**kwargs: Any,
):
super().__init__(scale_table, *args, **kwargs)
self.K = K
def _likelihood(
self, inputs: Tensor, scales: Tensor, means: Tensor, weights: Tensor
) -> Tensor:
likelihood = torch.zeros_like(inputs)
M = inputs.size(1)
for k in range(self.K):
likelihood += (
super()._likelihood(
inputs,
scales[:, M * k : M * (k + 1)],
means[:, M * k : M * (k + 1)],
)
* weights[:, M * k : M * (k + 1)]
)
return likelihood
def forward(
self,
inputs: Tensor,
scales: Tensor,
means: Tensor,
weights: Tensor,
training: Optional[bool] = None,
) -> Tuple[Tensor, Tensor]:
if training is None:
training = self.training
outputs = self.quantize(
inputs, "noise" if training else "dequantize", means=None
)
likelihood = self._likelihood(outputs, scales, means, weights)
if self.use_likelihood_bound:
likelihood = self.likelihood_lower_bound(likelihood)
return outputs, likelihood
@torch.no_grad()
def _build_cdf(self, scales, means, weights, abs_max):
num_latents = scales.size(1)
num_samples = abs_max * 2 + 1
TINY = 1e-10
device = scales.device
scales = scales.clamp_(0.11, 256)
means += abs_max
scales_ = scales.unsqueeze(-1).expand(-1, -1, num_samples)
means_ = means.unsqueeze(-1).expand(-1, -1, num_samples)
weights_ = weights.unsqueeze(-1).expand(-1, -1, num_samples)
samples = (
torch.arange(num_samples).to(device).unsqueeze(0).expand(num_latents, -1)
)
pmf = torch.zeros_like(samples).float()
for k in range(self.K):
pmf += (
0.5
* (
1
+ torch.erf(
(samples + 0.5 - means_[k]) / ((scales_[k] + TINY) * 2**0.5)
)
)
- 0.5
* (
1
+ torch.erf(
(samples - 0.5 - means_[k]) / ((scales_[k] + TINY) * 2**0.5)
)
)
) * weights_[k]
cdf_limit = 2**self.entropy_coder_precision - 1
pmf = torch.clamp(pmf, min=1.0 / cdf_limit, max=1.0)
pmf_scaled = torch.round(pmf * cdf_limit)
pmf_sum = torch.sum(pmf_scaled, 1, keepdim=True).expand(-1, num_samples)
cdf = F.pad(
torch.cumsum(pmf_scaled * cdf_limit / pmf_sum, 1).int(),
(1, 0),
"constant",
0,
)
pmf_quantized = torch.diff(cdf, dim=1)
# We can't have zeros in PMF because rANS won't be able to encode it.
# Try to fix this by "stealing" probability from some unlikely symbols.
pmf_zero_count = num_samples - torch.count_nonzero(pmf_quantized, dim=1)
_, pmf_first_stealable_indices = torch.min(
torch.where(
pmf_quantized > pmf_zero_count.unsqueeze(-1).expand(-1, num_samples),
pmf_quantized,
torch.tensor(cdf_limit + 1).int(),
),
dim=1,
)
pmf_real_zero_indices = (pmf_quantized == 0).nonzero().transpose(0, 1)
pmf_quantized[pmf_real_zero_indices[0], pmf_real_zero_indices[1]] += 1
pmf_real_steal_indices = torch.cat(
(
torch.arange(num_latents).to(device).unsqueeze(-1),
pmf_first_stealable_indices.unsqueeze(-1),
),
dim=1,
).transpose(0, 1)
pmf_quantized[
pmf_real_steal_indices[0], pmf_real_steal_indices[1]
] -= pmf_zero_count
cdf = F.pad(torch.cumsum(pmf_quantized, 1).int(), (1, 0), "constant", 0)
cdf = F.pad(cdf, (0, 1), "constant", cdf_limit + 1)
return cdf
def reshape_entropy_parameters(self, scales, means, weights, nonzero):
reshape_size = (scales.size(0), self.K, scales.size(1) // self.K, -1)
scales = (
scales.reshape(*reshape_size)[:, :, nonzero]
.permute(1, 0, 2, 3)
.reshape(self.K, -1)
)
means = (
means.reshape(*reshape_size)[:, :, nonzero]
.permute(1, 0, 2, 3)
.reshape(self.K, -1)
)
weights = (
weights.reshape(*reshape_size)[:, :, nonzero]
.permute(1, 0, 2, 3)
.reshape(self.K, -1)
)
return scales, means, weights
def compress(self, y, scales, means, weights):
abs_max = (
max(torch.abs(y.max()).int().item(), torch.abs(y.min()).int().item()) + 1
)
abs_max = 1 if abs_max < 1 else abs_max
y_quantized = torch.round(y)
zero_bitmap = torch.where(
torch.sum(torch.abs(y_quantized), (3, 2)).squeeze(0) == 0, 0, 1
)
nonzero = torch.nonzero(zero_bitmap).flatten().tolist()
symbols = y_quantized[:, nonzero] + abs_max
cdf = self._build_cdf(
*self.reshape_entropy_parameters(scales, means, weights, nonzero), abs_max
)
num_latents = cdf.size(0)
# rv = self.entropy_coder._encoder.encode_with_indexes(
# symbols.reshape(-1).int().tolist(),
# torch.arange(num_latents).int().tolist(),
# cdf.cpu().to(torch.int32),
# torch.tensor(cdf.size(1)).repeat(num_latents).int().tolist(),
# torch.tensor(0).repeat(num_latents).int().tolist(),
# )
rv = self.entropy_coder._encoder.encode_with_indexes(
symbols.reshape(-1).int().tolist(),
torch.arange(num_latents).int().tolist(),
cdf.cpu().tolist(),
torch.tensor(cdf.size(1)).repeat(num_latents).int().tolist(),
torch.tensor(0).repeat(num_latents).int().tolist(),
)
return (rv, abs_max, zero_bitmap), y_quantized
def decompress(self, strings, abs_max, zero_bitmap, scales, means, weights):
nonzero = torch.nonzero(zero_bitmap).flatten().tolist()
cdf = self._build_cdf(
*self.reshape_entropy_parameters(scales, means, weights, nonzero), abs_max
)
num_latents = cdf.size(0)
# values = self.entropy_coder._decoder.decode_with_indexes(
# strings,
# torch.arange(num_latents).int().tolist(),
# cdf.cpu().to(torch.int32),
# torch.tensor(cdf.size(1)).repeat(num_latents).int().tolist(),
# torch.tensor(0).repeat(num_latents).int().tolist(),
# )
values = self.entropy_coder._decoder.decode_with_indexes(
strings,
torch.arange(num_latents).int().tolist(),
cdf.cpu().tolist(),
torch.tensor(cdf.size(1)).repeat(num_latents).int().tolist(),
torch.tensor(0).repeat(num_latents).int().tolist(),
)
symbols = torch.tensor(values) - abs_max
symbols = symbols.reshape(scales.size(0), -1, scales.size(2), scales.size(3))
y_hat = torch.zeros(
scales.size(0), zero_bitmap.size(0), scales.size(2), scales.size(3)
)
y_hat[:, nonzero] = symbols.float()
return y_hat