Source code for compressai_vision.pipelines.split_inference.video_split_inference

# Copyright (c) 2022-2024, InterDigital Communications, Inc
# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:

# * Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
#   contributors may be used to endorse or promote products derived from this
#   software without specific prior written permission.

# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


from typing import Dict, List, Tuple, TypeVar

import torch
from torch import Tensor
from torch.utils.data import DataLoader
from tqdm import tqdm

from compressai_vision.evaluators import BaseEvaluator
from compressai_vision.model_wrappers import BaseWrapper
from compressai_vision.registry import register_pipeline
from compressai_vision.utils import dl_to_ld, ld_to_dl, time_measure, to_cpu
from compressai_vision.utils.measure_complexity import (
    calc_complexity_nn_part1_dn53,
    calc_complexity_nn_part1_plyr,
    calc_complexity_nn_part2_dn53,
    calc_complexity_nn_part2_plyr,
)

from ..base import BasePipeline

""" A schematic for the split-inference pipline

.. code-block:: none

             Fold                                                        Fold
           ┌ ─── ┐                                                     ┌ ─── ┐
           |     |                                                     |     |
           |     │                                                     |     │
     ┌─────┴─────▼─────┐                                         ┌─────┴─────▼─────┐
     │                 │     ┌───────────┐     ┌───────────┐     │                 │
     │     NN Task     │     │           │     │           │     │      NN Task    │
────►│                 ├────►│  Encoder  ├────►│  Decoder  ├────►│                 ├────►
     │      Part 1     │     │           │     │           │     │      Part 2     │
     │                 │     └───────────┘     └───────────┘     │                 │
     └─────────────────┘                                         └─────────────────┘

"""

K = TypeVar("K")
V = TypeVar("V")


[docs]@register_pipeline("video-split-inference") class VideoSplitInference(BasePipeline): def __init__( self, configs: Dict, device: Dict, ): super().__init__(configs, device) self._input_ftensor_buffer = [] self.datatype = configs["datatype"]
[docs] def build_input_lists(self, dataloader: DataLoader) -> Tuple[List]: gt_inputs = [] file_names = [] for _, d in enumerate(dataloader): gt_inputs.append( [ {"image_id": d[0]["image_id"]}, ] ) file_names.append(d[0]["file_name"]) return gt_inputs, file_names
def __call__( self, vision_model: BaseWrapper, codec, dataloader: DataLoader, evaluator: BaseEvaluator, ) -> Dict: """ Processes input data with the split inference video pipeline: compresses features, decompresses features, and evaluates performance. Args: vision_model (BaseWrapper): The vision model wrapper. codec: The codec used for compression. dataloader (DataLoader): The data loader for input data. evaluator (BaseEvaluator): The evaluator used for performance evaluation. Returns: Dict: A dictionary containing timing information, codec evaluation type, a list of output results, and performance evaluation metrics. """ self._update_codec_configs_at_pipeline_level(len(dataloader)) features = {} gt_inputs, file_names = self.build_input_lists(dataloader) self.init_time_measure() self.init_complexity_measure() if not self.configs["codec"]["decode_only"]: ## NN-part-1 for e, d in enumerate(tqdm(dataloader)): output_file_prefix = f'img_id_{d[0]["image_id"]}' if e < self._codec_skip_n_frames: continue if e >= self._codec_end_frame_idx: break if self.is_mac_calculation and e == self._codec_skip_n_frames: if hasattr(vision_model, "darknet"): # for jde kmacs, pixels = calc_complexity_nn_part1_dn53(vision_model, d) else: # for detectron2 kmacs, pixels = calc_complexity_nn_part1_plyr(vision_model, d) self.add_kmac_and_pixels_info("nn_part_1", kmacs, pixels) start = time_measure() res = self._from_input_to_features(vision_model, d, output_file_prefix) self.update_time_elapsed("nn_part_1", (time_measure() - start)) self._input_ftensor_buffer.append( {k: to_cpu(tensor) for k, tensor in res["data"].items()} ) del res["data"] if (e - self._codec_skip_n_frames) == 0: org_img_size = {"height": d[0]["height"], "width": d[0]["width"]} features["org_input_size"] = org_img_size features["input_size"] = res["input_size"] out_res = d[0].copy() del ( out_res["image"], out_res["width"], out_res["height"], out_res["image_id"], ) out_res["org_input_size"] = (d[0]["height"], d[0]["width"]) out_res["input_size"] = features["input_size"][0] del d[0]["image"] assert len(self._input_ftensor_buffer) == self._codec_n_frames_to_be_encoded if self.configs["nn_task_part1"].generate_features_only is True: print( f"features generated in {self.configs['nn_task_part1']['feature_dir']}\n exiting" ) raise SystemExit(0) # concatenate a list of tensors at each keyword item features["data"] = self._feature_tensor_list_to_dict( self._input_ftensor_buffer ) self._input_ftensor_buffer = [] # datatype conversion features["data"] = { k: v.type(getattr(torch, self.datatype)) for k, v in features["data"].items() } # Feature Compression start = time_measure() res, enc_time_by_module, enc_complexity = self._compress( codec, features, self.codec_output_dir, self.bitstream_name, "" ) self.update_time_elapsed("encode", (time_measure() - start)) self.add_time_details("encode", enc_time_by_module) if self.is_mac_calculation: self.add_kmac_and_pixels_info( "feature_reduction", enc_complexity[0], enc_complexity[1] ) # for bypass mode, 'data' should be deleted. if "data" in res["bitstream"] is False: del features["data"] if self.configs["codec"]["encode_only"] is True: print("bitstreams generated, exiting") raise SystemExit(0) else: # decode only res = {} bin_files = [ file_path for file_path in self.codec_output_dir.glob(f"{self.bitstream_name}*") if ( (file_path.suffix in [".bin", ".mp4"]) and not "_tmp" in file_path.name ) ] assert ( len(bin_files) > 0 ), f"Error: decode_only mode, no bitstream file matching {self.bitstream_name}*" assert ( len(bin_files) == 1 ), f"Error, decode_only mode, multiple bitstream files matching {self.bitstream_name}*" res["bitstream"] = bin_files[0] bitstream_bytes = res["bitstream"].stat().st_size # Feature Deompression start = time_measure() dec_features, dec_time_by_module, dec_complexity = self._decompress( codec, res["bitstream"], self.codec_output_dir, "" ) self.update_time_elapsed("decode", (time_measure() - start)) self.add_time_details("decode", dec_time_by_module) if self.is_mac_calculation: self.add_kmac_and_pixels_info( "feature_restoration", dec_complexity[0], dec_complexity[1] ) # dec_features should contain "org_input_size" and "input_size" # When using anchor codecs, that's not the case, we read input images to derive them if not "org_input_size" in dec_features or not "input_size" in dec_features: self.logger.warning( "Hacky: 'org_input_size' and 'input_size' retrived from input dataset." ) first_frame = next(iter(dataloader)) org_img_size = { "height": first_frame[0]["height"], "width": first_frame[0]["width"], } dec_features["org_input_size"] = org_img_size dec_features["input_size"] = self._get_model_input_size( vision_model, first_frame ) # separate a tensor of each keyword item into a list of tensors dec_ftensors_list = self._feature_tensor_dict_to_list(dec_features["data"]) assert all( [self.datatype in str(d.dtype) for d in dec_ftensors_list[0].values()] ), "Output features not of expected datatype" dec_ftensors_list = [ {k: v.type(torch.float32) for k, v in d.items()} for d in dec_ftensors_list ] assert len(dec_ftensors_list) == len(dataloader), ( f"The number of decoded frames ({len(dec_ftensors_list)}) is not equal " f"to the number of frames supposed to be decoded ({len(dataloader)})" ) self.logger.info("Processing NN-Part2...") output_list = [] for e, ftensors in enumerate(tqdm(dec_ftensors_list)): data = {k: v.to(self.device_nn_part2) for k, v in ftensors.items()} dec_features["data"] = data dec_features["file_name"] = file_names[e] dec_features["qp"] = ( "uncmp" if codec.qp_value is None else codec.qp_value ) # Assuming one qp will be used if self.is_mac_calculation and e == 0: if hasattr(vision_model, "darknet"): # for jde kmacs, pixels = calc_complexity_nn_part2_dn53( vision_model, dec_features ) else: # for detectron2 kmacs, pixels = calc_complexity_nn_part2_plyr( vision_model, data, dec_features ) self.add_kmac_and_pixels_info("nn_part_2", kmacs, pixels) start = time_measure() pred = self._from_features_to_output(vision_model, dec_features) self.update_time_elapsed("nn_part_2", (time_measure() - start)) if evaluator: evaluator.digest(gt_inputs[e], pred) out_res = dec_features.copy() del (out_res["data"], out_res["org_input_size"]) if self.configs["codec"]["decode_only"]: out_res["bytes"] = bitstream_bytes / len(dataloader) else: out_res["bytes"] = res["bytes"][e] out_res["coded_order"] = e out_res["input_size"] = dec_features["input_size"][0] out_res["org_input_size"] = ( f'{dec_features["org_input_size"]["height"]}x{dec_features["org_input_size"]["width"]}' ) output_list.append(out_res) # Calculate mac considering number of coded feature frames if self.is_mac_calculation: frames = ( len(dataloader) // 2 + 1 if codec.enc_tools["feature_reduction"]["temporal_resampling_enabled"] is True else len(dataloader) ) self.calc_kmac_per_pixels_video_task(frames, len(dataloader)) # performance evaluation on end-task eval_performance = self._evaluation(evaluator) return ( self.time_elapsed_by_module, codec.eval_encode_type, output_list, eval_performance, self.complexity_calc_by_module, ) @staticmethod def _feature_tensor_list_to_dict( data: List[Dict[str, Tensor]] ) -> Dict[str, Tensor]: """ Converts a list of feature tensors into a dictionary format. """ return {k: torch.cat(ftensors) for k, ftensors in ld_to_dl(data).items()} @staticmethod def _feature_tensor_dict_to_list(data: Dict): """ Converts a dict of feature tensors into a list of tensors. """ def coerce_tensors(vs) -> List[Tensor]: assert isinstance(vs, Tensor) or ( isinstance(vs, list) and all(isinstance(v, Tensor) for v in vs) ) return list(vs) return dl_to_ld({k: coerce_tensors(tensors) for k, tensors in data.items()})