compressai_vision.evaluators#
- class compressai_vision.evaluators.BaseEvaluator(datacatalog_name, dataset_name, dataset, output_dir='./vision_output/', criteria=None)[source]#
-
- training: bool#
- class compressai_vision.evaluators.COCOEVal(datacatalog_name, dataset_name, dataset, output_dir='./vision_output/', criteria='AP')[source]#
-
- training: bool#
- class compressai_vision.evaluators.MOT_HiEve_Eval(datacatalog_name, dataset_name, dataset, output_dir='./vision_output/', criteria='MOTA')[source]#
A Multiple Object Tracking Evaluator for HiEve
This class evaluates MOT performance of tracking model such as JDE specifically on HiEve
- training: bool#
- class compressai_vision.evaluators.MOT_JDE_Eval(datacatalog_name, dataset_name, dataset, output_dir='./vision_output/', criteria='MOTA')[source]#
A Multiple Object Tracking Evaluator
This class evaluates MOT performance of tracking model such as JDE in compressai-vision. BaseEvaluator is inherited to interface with pipeline architecture in compressai-vision
- Functions below in this class refers to
The class Evaluator inin Towards-Realtime-MOT/utils/evaluation.py at <Zhongdao/Towards-Realtime-MOT> <Zhongdao/Towards-Realtime-MOT>
Full license statement can be found at <Zhongdao/Towards-Realtime-MOT>
- training: bool#
- class compressai_vision.evaluators.MOT_TVD_Eval(datacatalog_name, dataset_name, dataset, output_dir='./vision_output/', criteria='MOTA')[source]#
A Multiple Object Tracking Evaluator for TVD
This class evaluates MOT performance of tracking model such as JDE specifically on TVD
- training: bool#
- class compressai_vision.evaluators.OpenImagesChallengeEval(datacatalog_name, dataset_name, dataset, output_dir='./vision_output/', criteria='AP50')[source]#
-
- training: bool#