compressai_trainer.plot#
For plotting.
- compressai_trainer.plot.featuremap_image(arr: numpy.ndarray, nrows: Optional[int] = None, ncols: Optional[int] = None, padding: Optional[int] = None, fill_value: Optional[float] = None, clim: Optional[Tuple[float, float]] = None, cmap: Optional[str] = None) numpy.ndarray [source]#
Returns 2D featuremap image of tiled channels for the given tensor.
- Parameters
arr – tensor of shape (c, …)
nrows – number of tiled rows
ncols – number of tiled columns
padding – padding between tiles (default is 2 for arr.ndim > 2)
fill_value – value to set remaining area to
clim – colorbar limits
cmap – colormap; if None, no colormap is applied
- compressai_trainer.plot.featuremap_matplotlib(arr: np.ndarray, *, nrows: Optional[int] = None, ncols: Optional[int] = None, padding: Optional[int] = None, fill_value: Optional[float] = None, clim: Optional[Tuple[float, float]] = None, cmap: str = 'plasma', cbar: bool = True, ax: Optional[plt.Axes] = None, tile_method: str = 'reshape', **fig_kw) plt.Figure [source]#
Plots 3D tensor as a 2D featuremap of tiled channels.
Note
tile_method="loop"
is slow due to the nested loop. For a faster alternative with slightly lower publication quality, trytile_method="reshape"
.- Parameters
arr – chw tensor
nrows – number of tiled rows
ncols – number of tiled columns
padding – padding between tiles
fill_value – value to set remaining area to
clim – colorbar limits
cmap – colormap
cbar – whether to show colorbar
tile_method – “reshape” (default, fast) or “loop” (slow)
fig_kw – keyword arguments to pass to matplotlib
- compressai_trainer.plot.plot_entropy_bottleneck_distributions(entropy_bottleneck: compressai.entropy_models.entropy_models.EntropyBottleneck, scatter_kwargs: dict[str, Any] = {}, layout_kwargs: dict[str, Any] = {}, hide_delta_distributions: bool = True)[source]#
Plots EntropyBottleneck distributions.
- compressai_trainer.plot.plot_pdf_signatures(x: list[numpy.ndarray], p: list[numpy.ndarray], p_hat: list[numpy.ndarray], *, backend: str = 'matplotlib', **kwargs)[source]#
Plots PDF signatures of per-sample measured and encoding distributions.
Probability distribution functions (pdf) can be plotted as a 2D image.
The x-axis represents the channel index.
The y-axis represents the bin index.
Color intensity represents the negative log-likelihood (in bits) of the probability of the bin.
This is useful for visualizing the efficacy of probability distribution reconstruction/correction models.
- Parameters
x – List of input images.
p – List of measured probability distributions (targets).
p_hat – List of encoding probability distributions.
backend – Backend to use for plotting (“matplotlib” or “plotly”).