Source code for compressai_trainer.plot.distribution

# Copyright (c) 2021-2023, InterDigital Communications, Inc
# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:

# * Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
#   contributors may be used to endorse or promote products derived from this
#   software without specific prior written permission.

# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import annotations

from typing import Any

import pandas as pd
import torch
from compressai.entropy_models import EntropyBottleneck

_PLOT_DISTRIBUTIONS_EB_LINE_SETTINGS_COMMON = dict(
    x="dy",
    y="pdf",
    color="name",
    hover_data=["y", "dy", "pdf", "cdf", "median"],
    line_shape="hvh",
)

_PLOT_DISTRIBUTIONS_EB_LAYOUT_SETTINGS_COMMON = dict(
    xaxis_title="Δy = y - median",
    yaxis_title="p(Δy)",
    yaxis=dict(range=[0, 1]),
)


[docs]def plot_entropy_bottleneck_distributions( entropy_bottleneck: EntropyBottleneck, scatter_kwargs: dict[str, Any] = {}, layout_kwargs: dict[str, Any] = {}, hide_delta_distributions: bool = True, ): """Plots EntropyBottleneck distributions.""" import plotly.express as px df = _get_entropy_bottleneck_distributions_dataframe(entropy_bottleneck) line_kwargs = {**_PLOT_DISTRIBUTIONS_EB_LINE_SETTINGS_COMMON, **scatter_kwargs} layout_kwargs = {**_PLOT_DISTRIBUTIONS_EB_LAYOUT_SETTINGS_COMMON, **layout_kwargs} fig = px.line(df, **line_kwargs) fig.update_layout(**layout_kwargs) if hide_delta_distributions: fig.for_each_trace( lambda trace: trace.update( visible=True if trace["y"].max() < 1 else "legendonly" ) ) return fig
def _get_entropy_bottleneck_distributions_dataframe( entropy_bottleneck: EntropyBottleneck, ) -> pd.DataFrame: c = entropy_bottleneck.channels q = entropy_bottleneck.quantiles[:, 0, :].detach() left = (q[:, 1] - q[:, 0]).ceil().int() right = (q[:, 2] - q[:, 1]).ceil().int() sizes = left + 1 + right max_size = sizes.max().item() num_samples = max_size t = torch.linspace(0, max_size - 1, num_samples, device=q.device) dy = t[None, :] - left[:, None] y = dy + q[:, 1, None] with torch.no_grad(): _, y_likelihoods = entropy_bottleneck(y.unsqueeze(0), training=False) pdfs = y_likelihoods.squeeze(0) cdfs = y_likelihoods.squeeze(0).cumsum(-1) medians = q[:, 1, None].repeat(1, num_samples) name = [f"{i}" for i in range(c) for _ in range(sizes[i].item())] def trim(y): y = y.cpu().numpy() xss = [y[i, :length] for i, length in enumerate(sizes.cpu().tolist())] return [x for xs in xss for x in xs] d = { "name": name, "y": trim(y), "dy": trim(dy), "pdf": trim(pdfs), "cdf": trim(cdfs), "median": trim(medians), } df = pd.DataFrame.from_dict(d) return df